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Abstract We refer to the real Jordan Banach algebra of bounded Hermitian operators on a
Hilbert space as a Hermitian algebra. In this paper we define and launch a study of a class
of generalized Hermitian (GH) algebras. Among the examples of GH-algebras are ordered
special Jordan algebras, JW-algebras, and AJW-algebras, but unlike these more restricted
cases, a GH-algebra is not necessarily a Banach space and its lattice of projections is not
necessarily complete. In this paper we develop the basic theory of GH-algebras, identify
their unit intervals as effect algebras, and observe that their projection lattices are sigma-
complete orthomodular lattices. We show that GH-algebras are spectral order-unit spaces
and that they admit a substantial spectral theory.
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1 Introduction

We shall refer to the real Banach space G(H) of bounded Hermitian operators on a Hilbert
space H, organized in the usual way into a partially ordered real vector space, as the Her-
mitian algebra of H. We call G(H) an “algebra” because it is, in fact, a JW-algebra in the
sense of [24, p. 3]. Our purpose in this article is to introduce and launch a study of a gen-
eralization of G(H) which we call a generalized Hermitian algebra, or a GH-algebra for
short.
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Our definition of a GH-algebra (Definition 2.1 below), features a partially ordered abelian
group G with order unit 1. In accordance with the theme of [12], we pay special attention to
the triple G ⊇ E ⊇ P consisting of the GH-algebra G, the “unit interval” E in G, and the
lattice P of “projections” in G. We derive the basic properties of G (Sect. 3), observe that G

can be organized into a special Jordan algebra over the real numbers (Theorem 4.2), prove
that P is precisely the set of extreme points of the convex set E (Theorem 4.3), and show
that P is a σ -complete orthomodular lattice (a σ -OML) [20]. In Sect. 6, we prove that G is
a spectral order-unit space [15]; hence, as we observe in Sect. 7, G admits a generalization
of the noncommutative spectral theory of Alfsen and Shultz [2, 3].

An ordered special Jordan algebra in the sense of Sarymsakov et al. [23] is a GH-algebra;
however, such an algebra is required to satisfy a compatibility condition on the suprema of
bounded ascending nets, hence it is a Banach space and its projections form a complete
orthomodular lattice. A GH-algebra G is only required to satisfy a much weaker condition
on suprema of bounded ascending sequences of pairwise commuting elements (axiom (vii)
in Definition 2.1), it is not necessarily a Banach space, and its projection lattice P is not
necessarily a complete OML.

The JW-algebras studied by Topping in [24], as well as the AJW-algebras discussed in
[24, Sect. 20] are also special cases of GH-algebras. Again, JW-algebras and AJW-algebras
are Banach spaces, and in both cases, the projections form complete OMLs.

In [4], a class of Banach-normed Jordan algebras, called JB-algebras, is defined axiomat-
ically and studied by Alfsen et al. For a JB-algebra, a Banach norm is postulated ab ini-
tio, whereas the (not necessarily Banach) norm on a GH-algebra emerges naturally as a
consequence of the theory of archimedean partially ordered real vector spaces [1, Proposi-
tion II.1.2].

The theory of ordered Jordan algebras developed by Sarymsakov et al., relies on Freuden-
thal’s spectral theory for semifields. For Topping’s JW-algebras and AJW-algebras, the
crucial spectral theory comes gratis from the spectral theory for operator algebras. The
Alfsen-Schultz theory requires a pointwise monotone σ -complete (hence a Banach) order-
unit normed space such that exposed faces of the cone base in a dual base-normed space are
projective. Our theory of GH-algebras is more algebraic, does not stipulate a Banach norm,
does not require a complete projection lattice, is considerably more self-contained than the
aforementioned special cases, and yet it too admits a substantial spectral theory.

As per [6], GH-algebras may be regarded as a class of quantum structures. Measurable
or Borel spaces (X, B) consisting of a nonempty set X and a σ -field B of subsets of X are
featured prominently in the conventional theory of measure and integration, Kolmogorovian
probability theory, Mackey’s theory of induced unitary representations, and the represen-
tation of observables in Dirac-von Neumann quantum mechanics. A σ -field of sets is a
σ -complete, but not necessarily a complete, Boolean algebra. The σ -OML of projections
in a GH-algebra is covered by maximal Boolean subalgebras, each of which is σ -complete,
but not necessarily complete, and each of which corresponds uniquely to a maximal com-
mutative subalgebra of the GH-algebra. In this way, the theory of GH-algebras provides a
natural and direct contact with measure, integration, probability, group representation, and
the quantum theory of measurement.

2 GH-Algebras

In this article, N is the set of positive integers and R is the ordered field of real numbers. We
begin with our axioms for a GH-algebra. To help fix ideas, see Examples 2.2, 2.3, and 2.4
below.
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Definition 2.1 A generalized Hermitian (GH) algebra is a subgroup G of the additive group
of a ring R with unity 1 such that:

(i) G is a partially ordered abelian group [16, pp. 1–4] with positive cone G+ = {g ∈ G :
0 ≤ g} such that 1 ∈ G+ and 1 is an order unit in G [16, p. 4].

(ii) If a, b ∈ G+, then ab = ba ⇒ ab ∈ G+.
(iii) If a, b ∈ G+, then aba ∈ G+ and aba = 0 ⇒ ab = ba = 0.
(iv) If g ∈ G, then g2 ∈ G+.
(v) There exists d ∈ G+ such that 2d = 1.

(vi) If g,h ∈ G, then gh2g = 0 ⇒ gh = hg = 0.
(vii) Each ascending sequence g1 ≤ g2 ≤ · · · of pairwise commuting elements of G that is

bounded above in G has a supremum (least upper bound) g in G, and g commutes
with every element in G that commutes with every gi , i = 1,2, . . . .

The ring R is called the enveloping ring of the GH-algebra G, the unit interval E in G

is defined by E := {e ∈ G : 0 ≤ e ≤ 1},1 and (following Ludwig [22]) elements e ∈ E are
called effects. We define P := {p ∈ G : p = p2} to be the set of all idempotent elements in
G, and we refer to the elements p ∈ P as projections.

In the sequel, if j is one of i, ii, . . . , or vii, then “axiom (j)” will always refer to axiom (j) in
Definition 2.1.

Example 2.2 If R is a unital C∗-algebra, G is the set of all self-adjoint elements in R,
and G is partially ordered as usual [18, 19, Sect. 4.2], then axioms (i)–(vi) are satisfied, but
axiom (vii) may fail. If R is a von Neumann algebra, then [18, 19, Lemma 5.1.4] implies that
axiom (vii) also holds; hence G is a GH-algebra with enveloping ring R. More generally,
if R is an AW∗-algebra [21], then G is a GH-algebra with enveloping ring R.

Example 2.3 Let X be a compact Hausdorff space. We denote by C(X,R) the real commu-
tative Banach algebra with pointwise operations and the supremum norm of all continuous
functions f : X → R. With pointwise partial order, and with R = C(X,R) as its enveloping
ring, the partially ordered additive abelian group G = C(X,R) satisfies axioms (i)–(vi), but
it satisfies axiom (vii) iff2 X is basically disconnected, i.e., iff the closure of every open Fσ

subset of X remains open.3

Example 2.4 Let (X, B) be a measurable space. We denote by R := RV (X, B) the real com-
mutative linear algebra with pointwise operations of all random variables (i.e., B-measurable
functions) f : X → R on (X, B). With pointwise partial order and with R as its enveloping
ring, the additive subgroup RV b(X, B) of R consisting of the bounded random variables on
(X, B) is a GH-algebra with R as its enveloping ring.

Let G be a GH-algebra. Arguing as in [11, Lemma 4.1], we see that the element d in
axiom (vi) is uniquely determined, and in what follows, we shall denote it by 1

2 := d . Thus,
0 ≤ 1

2 ∈ G, and 1
2 ≤ 1

2 + 1
2 = 1, so 1

2 ∈ E. The element 1
2 commutes with every element in R,

g ∈ G ⇒ 1
2g ∈ G, and the mapping g �→ 1

2g is a group-theoretic and order automorphism

1The notation := means ‘equals by definition’.
2We use ‘iff’ as an abbreviation for ‘if and only if’.
3Recall that a Boolean algebra is σ -complete iff its Stone space is basically disconnected.
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of G with g �→ 2g as its inverse (cf. [11, Lemma 4.2]). By axioms (iv) and (v), G is closed
under the Jordan product 1

2 (gh + hg) = 1
2 ((g + h)2 − g2 − h2) for all g,h ∈ G.

Standing Assumption 2.5 In the sequel, we assume that G is a GH-algebra with envelop-
ing ring R, G+ = {a ∈ G : 0 ≤ a} is the positive cone in G, E = {e ∈ G : 0 ≤ e ≤ 1} is
the unit interval in G, and P = {p ∈ G : p = p2} is the set of projections in G. To avoid
trivialities, we assume that G 	= {0}, i.e., 1 	= 0.

By axiom (i), 1 is an order unit4 in G, i.e., if g ∈ G, there exists n ∈ N such that g ≤ n · 1.
Consequently, all of the results in [16] pertaining to partially ordered abelian groups with
order units are applicable to G; in particular, G is directed, i.e., every element g ∈ G can be
written as g = a − b with a, b ∈ G+ [16, p. 4].

Evidently,

0,1 ∈ P ⊆ E ⊆ G+ ⊆ G ⊆ R.

We understand that G+, E, and P are partially ordered by the restrictions of the partial order
≤ on G. Since the mappings g �→ −g, e �→ 1 − e, and p �→ 1 − p are order-reversing and
of period 2 on G, E, and P , respectively, there is a duality principle whereby properties of
existing suprema in G, E, or P are converted to properties of infima and vice versa.

In what follows, we focus attention on the directed partially ordered abelian group G,
the unit interval E ⊆ G, and the set P ⊆ E of projections. For our purposes in this paper,
the enveloping ring R is just a convenient mathematical environment in which to study the
triple P ⊆ E ⊆ G, and the detailed structure of R will not concern us here.

3 Basic Properties of G

Definition 3.1 Let g,h ∈ G. We define gCh to mean that g commutes with h, i.e., that
gh = hg. If A ⊆ G, we also define C(A), called the commutant of A in G, by C(A) := {g ∈
G : gCa,∀a ∈ A}. The subgroup C(G) of G is called the center of G. The set CC(A) :=
C(C(A)) is called the bicommutant of A in G, and if g ∈ CC(h) := CC({h}), we say that g

double commutes with h.

In [10, 11, 14] we introduced and studied the notion of an e-ring. It is easy to see that
(R,E) is an e-ring with E+ = G+; consequently, all of the results in [10, 11, 14] are avail-
able to us and we shall use them as necessary in what follows. In the sequel, the properties
in the following lemma will be used routinely, often without explicit attribution.

Lemma 3.2 Let g,h, k ∈ G. Then: (i) gh = 0 ⇔ hg = 0. (ii) gCh ⇒ gh = hg ∈ G.
(iii) ghg ∈ G. (iv) n ∈ N ⇒ gn ∈ G. (v) If 0 ≤ k ∈ C(g) ∩ C(h), then g ≤ h ⇒ gk ≤ hk.
(vi) −1 ≤ g ≤ 1 ⇔ g2 ≤ 1.

Proof To prove (i), suppose gh = 0. Then gh2g = 0, whence by axiom (vi), hg = 0. Parts
(ii)–(iv) follow from [11, Theorem 4.1]. To prove (v), suppose that 0 ≤ k ∈ C(g)∩C(h) and
g ≤ h. Then 0 ≤ h − g, k and (h − g)Ck, so 0 ≤ (h − g)k = hk − gk by axiom (ii), and by
part (ii), hk,gk ∈ G.

4Some authors use the terminology strong order unit.
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If −1 ≤ g ≤ 1, then 0 ≤ 1−g,1+g with (1−g)C(1+g), whence 0 ≤ (1−g)(1+g) =
1 − g2, i.e., g2 ≤ 1. Conversely, g2 ≤ 1 ⇒ −1 ≤ g ≤ 1 follows from [11, Lemma 4.3(iii)],
proving (vi). �

The unit interval E ⊆ G forms a so-called interval effect algebra [5]. The properties of E

and P ⊆ E in the following lemma are consequences of [10, Lemmas 2.4, 2.6, Theorem 2.9,
Corollary 2.10] and [11, Theorem 3.2], and they also will be used routinely in the sequel.

Lemma 3.3 Let d, e, f ∈ E, p ∈ P , and g,h ∈ G. Then: (i) If eCf , then 0 ≤ ef ≤ e, f ≤
1 and 0 ≤ e2 ≤ e ≤ 1. (ii) e ≤ p ⇔ e = ep ⇔ e = pe and p ≤ e ⇔ p = pe ⇔ p = ep.
(iii) pgp,php ∈ G, and if g ≤ h, then pgp ≤ php. (iv) d ∈ P iff whenever e, f, e + f ∈ E,
then e, f ≤ d ⇒ e + f ≤ d . (v) {en : n ∈ N} ⊆ E and e ≥ e2 ≥ e3 ≥ · · · .

Theorem 3.4 Suppose that ∅ 	= Q ⊆ P and that Q has a supremum (respectively, an infi-
mum) p in G. Then p ∈ P and p is the supremum (respectively, the infimum) of Q in P .

Proof By duality it is sufficient to consider the case in which p is the infimum of Q in G. As
0 ≤ q for all q ∈ Q, we have 0 ≤ p. Choose any q0 ∈ Q. Then 0 ≤ p ≤ q0 ≤ 1, so p ∈ E. To
prove that p ∈ P , we use the criterion in Lemma 3.3(iv). Thus, suppose that e, f, e + f ∈ E

with e, f ≤ p. Then, for all q ∈ Q, we have e, f ≤ q , whereupon e + f ≤ q , and it follows
that e + f ≤ p, whence p ∈ P . As p ∈ P , it is clear that p is the infimum of Q in P . �

4 Consequences of Axiom (vii)

As is already evident from Examples 2.2 and 2.3, axiom (vii) is rather strong, but unless G

is commutative (i.e., unless G = C(G)), it is considerably weaker than the condition that G

is monotone σ -complete [16, Chap. 16], [13], which in turn, even in the commutative case,
is weaker than the requirement of pointwise monotone σ -completeness [2, (4.1)]. In this
section we collect some of the consequences of this critical axiom.

Theorem 4.1 (i) If 0 ≤ a ∈ G, then 0 is the infimum in G of the sequence (( 1
2 )na)n∈N.

(ii) G is archimedean [16, p. 20]. (iii) There are no nonzero nilpotents in G.

Proof (i) As 0 ≤ a, the sequence (( 1
2 )na)n∈N is descending, bounded below by 0, and its

elements commute pairwise, so by axiom (vii) and duality, it has an infimum c in G and
0 ≤ c. Also, c ≤ ( 1

2 )n+1a for all n ∈ N, whence 2c ≤ ( 1
2 )na for all n ∈ N, so 2c ≤ c, i.e.,

c ≤ 0, and it follows that c = 0.
(ii) Suppose g,h ∈ G and ng ≤ h for all n ∈ N. As G is directed, there exist a, b ∈ G

with 0 ≤ a, b and h = a − b ≤ a, whence ng ≤ a for all n ∈ N. In particular, 2ng ≤ a for all
n ∈ N, and it follows that g ≤ ( 1

2 )na for all n ∈ N. Consequently, by part (i), g ≤ 0.
(iii) As G is archimedean, part (iii) follows from [11, Theorem 4.2]. �

Theorem 4.2 G can be organized into an archimedean partially ordered real vector space
with order unit 1 and it is a (special) Jordan algebra with respect to the Jordan product
(g,h) �→ 1

2 (gh + hg).

Proof Only axiom (vii) (not the stronger Vigier property used in [11]) is needed for the
proof of [11, Theorem 7.2]; hence G can be organized into a partially ordered real vector
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space that is also a Jordan algebra with the indicated Jordan product. Also G is archimedean
by Theorem 4.1(ii). �

By Theorem 4.2, G is not only a special Jordan algebra, it is also a so-called order-unit
space [1, p. 69], i.e., an archimedean partially ordered real vector space with order unit 1,
and it will be regarded as such in the sequel. As is customary, if λ ∈ R, we shall identify λ · 1
with λ, so that the ordered field R is identified with a subfield of C(G).

Theorem 4.3 The set E of effects in G is convex, and P is precisely the set of extreme points
of E.

Proof The convexity of E is obvious. Suppose p ∈ P and p = λe + (1 − λ)f with 0 <

λ < 1 and e, f ∈ E. Then λe, (1 − λ)f ∈ E with λe, (1 − λ)f ≤ p; hence λep = λe and
(1 − λ)fp = (1 − λ)f , and it follows that e = ep and f = fp, i.e., e, f ≤ p. Thus, e ≤
λe+ (1−λ)f , so (1−λ)e ≤ (1−λ)f , and therefore e ≤ f . Likewise, f ≤ e, so e = f = p.

Conversely, suppose e ∈ E and e is an extreme point of E. As 0 ≤ e2 ≤ e ≤ 1, we have
e2 ∈ E. Also, 0 ≤ (1 − e)2 = 1 − 2e + e2, so e2 ≤ e ≤ 2e ≤ 1 + e2, whence 0 ≤ 2e − e2 ≤ 1,
i.e., 2e − e2 ∈ E. But, e = 1

2e2 + 1
2 (2e − e2), and as e is an extreme point of E, it follows

that e = e2, i.e., e ∈ P . �

Lemma 4.4 Let e ∈ E, let d := 1 − e, let d1 := 1
2d , and define the sequence (dn)n∈N re-

cursively by dn+1 := 1
2 (d + (dn)

2) for all n ∈ N. Then (dn)n∈N is an ascending sequence
of pairwise commuting effects in E ∩ CC(e), it has a supremum s in G, s ∈ CC({dn : n ∈
N}) ⊆ CC(e) and (1 − s)2 = e with 1 − s ∈ CC(e).

Proof By axiom (vii), (dn)n∈N has a supremum s in G and s ∈ CC({dn : n ∈ N}). Arguing
as in the proof of [11, Theorem 6.1], we have (1 − s)2 = e with 1 − s ∈ CC(e). �

Theorem 4.5 If 0 ≤ g ∈ G, there exists a unique element in G, called the square root of g

and denoted by g1/2, such that 0 ≤ g1/2 and (g1/2)2 = g; moreover, g1/2 ∈ CC(g).

Proof By Theorem 4.1(iii), there are no nonzero nilpotents in G, hence the desired conclu-
sions follow from Lemma 4.4 and [11, Corollary 6.1 and Theorem 6.4]. �

Lemma 4.6 (i) If 0 ≤ gi ∈ G for i = 1,2, . . . , n, there exists 0 < λ ∈ R such that λgi ∈ E

for i = 1,2, . . . , n. (ii) G+ = {ne : n ∈ N, e ∈ E}.

Proof (i) Because 1 is an order unit in G, there exists N ∈ N such that g1, g2, . . . , gn ≤
N · 1 = N . Let λ := 1/N . (ii) If n ∈ N and e ∈ E, it is clear that ne ∈ G+. Conversely, if
g ∈ G+, choose n ∈ N with g ≤ n, and put e := (1/n)g. Then e ∈ E and g = ne. �

Theorem 4.7 Let g ∈ G be the supremum (respectively, the infimum) in G of the ascending
(respectively, descending) sequence (gn)n∈N ⊆ G of pairwise commuting elements. Suppose
0 ≤ h ∈ G and hCgn for all n ∈ N. Then gh = hg is the supremum (respectively, the infi-
mum) in G of (gnh)n∈N.

Proof We prove the lemma for an ascending sequence—the result for a descending sequence
then follows by duality. By axiom (vii), we have gCh, so gh = hg ∈ G. As 0 ≤ g − g1 and
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0 ≤ h, Lemma 4.6(i) implies that there exists 0 < λ ∈ R such that λ(g − g1), λh ∈ E. For all
n ∈ N, 0 ≤ g − gn ≤ g − g1, so 0 ≤ λ(g − gn) ≤ λ(g − g1) ≤ 1, whence λ(g − gn), λh ∈ E.
Also, λ(g − gn)Cλh, whence λ(g − gn)λh ≤ λ(g − gn), i.e.,

λ(g − gn)h ≤ g − gn for all n ∈ N.

As gn ≤ g and 0 ≤ h ∈ C(gn) ∩ C(g), it follows that gnh ≤ gh for all n ∈ N. Suppose k ∈ G

and gnh ≤ k for all n ∈ N. We have to show that gh ≤ k. We have

λ(gh − k) ≤ λ(gh − gnh) = λ(g − gn)h ≤ g − gn for all n ∈ N,

whence gn ≤ g − λ(gh − k) for all n ∈ N, and it follows that g ≤ g − λ(gh − k). Therefore,
λ(gh − k) ≤ 0, so gh − k ≤ 0, i.e., gh ≤ k. �

Lemma 4.8 Let g,h ∈ G with gCh and 0 ≤ g ≤ h. Then: (i) g2 ≤ h2 and (ii) g1/2 ≤ h1/2.

Proof (i) Follows from [10, Lemma 2.7(iii)].
(ii) Choose 0 < λ ∈ R such that e := λg ∈ E and f := λh ∈ E. Then eCf , and e ≤ f . As

e1/2 = λ1/2g1/2 and f 1/2 = λ1/2h1/2, it will be sufficient to prove that e1/2 ≤ f 1/2. Define

d := 1 − e, c := 1 − f, d1 := 1

2
d, c1 := 1

2
c

and by recursion, for all n ∈ N,

dn+1 := 1

2
(d + (dn)

2) and cn+1 := 1

2
(c + (cn)

2).

By Lemma 4.4, (dn)n∈N and (cn)n∈N have suprema s and t , respectively, in G; moreover,
e1/2 = 1 − s and f 1/2 = 1 − t . As e ≤ f , we have c ≤ d , c1 ≤ d1, and by part (i) and
induction on n, cn ≤ dn for all n ∈ N. Therefore, t ≤ s, so e1/2 = 1 − s ≤ 1 − t = f 1/2. �

5 Carrier Projections and Positive Parts

The notion of a carrier projection (Definition 5.3 below) enables us to deal efficiently with
the question of whether two elements g,h ∈ G annihilate each other. By Lemma 3.2(i),
gh = 0 ⇔ hg = 0, so it is not necessary to distinguish between left and right annihilation.

Lemma 5.1 Let e ∈ E. Then ((1−e)n)n∈N is a descending sequence of pairwise commuting
effects in E, whence by axiom (vii), it has an infimum q in G and q ∈ CC(e). Moreover,
1 − q ∈ P ∩ CC(e), and for all h ∈ G, eh = 0 ⇔ (1 − q)h = 0.

Proof By axiom (vii), q ∈ CC{(1 − e)n : n ∈ N} ⊆ CC(e), so 1 − q ∈ CC(e). Evidently,
0 ≤ q ≤ 1 − e ≤ 1, whence 0 ≤ q1/2 ≤ 1 by Lemma 4.8(ii), i.e., q1/2 ∈ E, and it follows
that q = (q1/2)2 ≤ q1/2. For every n ∈ N, we have q ≤ (1 − e)2n, so by Lemma 4.8(ii) again,
q1/2 ≤ (1 − e)n, and therefore q1/2 ≤ q . Consequently, q1/2 = q , so q = q2 ∈ P , whence
1 − q ∈ P ∩ CC(e).

Suppose h ∈ G and eh = 0. Then 0 ≤ h2 and hCe, therefore h2C(1 − e)n for all n ∈ N.
By Theorem 4.7, h2q = qh2 is the infimum in G of the sequence (h2(1 − e)n)n∈N. But
h2(1 − e) = h2, and by induction on n, h2(1 − e)n = h2 for all n ∈ N, so all terms in the
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sequence (h2(1 − e)n)n∈N are equal to h2, and it follows that h2q = h2. Therefore, (1 −
q)h2(1 − q) = 0, so (1 − q)h = 0 by axiom (vi), and it follows that eh = 0 ⇒ (1 − q)h = 0.

Conversely, suppose that (1−q)h = 0. As q is the infimum in G of ((1−e)n)n∈N, we have
q ≤ 1− e, so e ≤ 1−q ∈ P , and it follows that e = e(1−q). Therefore eh = e(1−q)h = 0,
and we have eh = 0 ⇔ (1 − q)h = 0. �

Theorem 5.2 For each g ∈ G there is a uniquely determined projection go ∈ P such that,
for all h ∈ G, gh = 0 ⇔ goh = 0. Moreover, go ∈ CC(g).

Proof Let g ∈ G. As 0 ≤ g2, there exists 0 < λ ∈ R such that e := λg2 ∈ E. By Lemma 5.1,
there is a projection go ∈ P ∩CC(e) = CC(g2) ⊆ CC(g) such that, for all h ∈ G, eh = 0 ⇔
goh = 0. For all h ∈ G, axiom (vi) implies that gh = 0 ⇒ g2h = 0 ⇒ hg2h = 0 ⇒ gh = 0,
so

gh = 0 ⇔ g2h = 0 ⇔ λg2h = 0 ⇔ eh = 0 ⇔ goh = 0.

To prove uniqueness, suppose p ∈ P and gh = 0 ⇔ ph = 0 for all h ∈ G. Then goh = 0 ⇔
ph = 0 for all h ∈ G. Putting h = 1 − p, we find that go(1 − p) = 0, i.e., go = gop, so
go ≤ p. By symmetry, p ≤ go, so p = go. �

Definition 5.3 If g ∈ G, the uniquely determined projection go in Theorem 5.2 is called the
carrier projection of g.

As left and right annihilation are equivalent in G, the carrier projection go ∈ P of g ∈ G

is characterized not only by the condition gh = 0 ⇔ goh = 0 for all h ∈ G, but also by the
condition hg = 0 ⇔ hgo = 0 for all h ∈ G. Therefore, G has the so-called carrier property
[14, Definition 3.3], and the results of [14, Sect. 3] are at our disposal.

Theorem 5.4 P is a σ -complete orthomodular lattice (σ -OML).

Proof That P is an OML follows from [14, Theorem 3.5]. Let p1 ≤ p2 ≤ · · · be an ascend-
ing sequence in P . To prove that P is σ -complete, it will be sufficient to show that (pn)n∈N

has a supremum in P . As comparable projections commute, the projections in the sequence
(pn)n∈N commute pairwise, whence by axiom (vii), (pn)n∈N has a supremum p in G. By
Theorem 3.4, p ∈ P and p is the supremum of (pn)n∈N in P . �

If p,q ∈ P , we use the usual notation p ∨ q and p ∧ q for the supremum and infimum,
respectively, of p and q in the σ -OML P . More generally, if Q ⊆ P , we use the notation∨

Q (respectively,
∧

Q) for an existing supremum (respectively, infimum) of Q in P . By
definition, p is orthogonal to q , in symbols p ⊥ q iff p ≤ 1 − q , i.e., iff p + q ∈ P . Re-
call that elements p,q ∈ P are called Mackey compatible iff there are pairwise orthogonal
elements p1, q1, r ∈ P such that p = p1 ∨ r and q = q1 ∨ r .

Lemma 5.5 Let p,q ∈ P . Then: (i) p ≤ q ⇔ q − p ∈ P . (ii) If p ≤ q , then q − p = q ∧
(1 − p). (iii) p ⊥ q ⇔ pq = qp = 0 and if p ⊥ q , then p + q = p ∨ q . (iv) If pCq , then
p ∨ q = p + q − pq , p ∧ q = pq , and p + q = p ∨ q + p ∧ q . (v) p and q are Mackey
compatible iff pCq .

Proof For (i) and (ii), see [10, Theorem 2.9 and Corollary 2.14]. For (iii), see [10, Theo-
rem 2.11 and Corollary 2.13]. For (iv), see [10, Theorem 2.12 and Corollary 2.13]. To prove
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(v), first suppose pCq . By (iv), r := pq = p ∧ q ∈ P , by (ii), p − r, q − r ∈ P ; hence
p = (p − r) + r = (p − r) ∨ r , q = (q − r) + r = (q − r) ∨ r , and p − r, q − r, r are pair-
wise orthogonal. Conversely, if p = p1 + r , q = q1 + r and p1, q1, r are pairwise orthogonal
elements in P , then pq = qp = r . �

Definition 5.6 Let g ∈ G. As 0 ≤ g2 (axiom (iv)), we can and do define |g| := (g2)1/2. Also,
we define g+ = 1

2 (|g| + g) and g− = 1
2 (|g| − g).

Using the carrier projection p = (g+)o, we now show that the absolute value |g| and the
positive and negative parts g+ and −g− of g ∈ G have the expected properties.

Theorem 5.7 Let g ∈ G and let p := (g+)o. Then:

(i) |g|2 = g2. (ii) |g|, g+, g− ∈ CC(g).
(iii) g = g+ − g−. (iv) 0 ≤ |g| = g+ + g−.
(v) g+g− = g−g+ = 0. (vi) |−g| = |g|.

(vii) g− = (−g)+. (viii) g+ = (−g)−.
(ix) p ∈ CC(g) (x) pC|g|
(xi) pg = g+. (xii) (1 − p)g = −g−.

(xiii) 0 ≤ p|g| = g+. (xiv) 0 ≤ (1 − p)|g| = g−.

Proof (i)–(viii) are obvious. By Theorem 5.2 and (ii), we have p ∈ CC(g+) ⊆ CC(g), prov-
ing (ix), and (x) follows from (ix) and (ii). We have pg+ = g+, and since g+g− = 0, we also
have pg− = 0; hence (xi) and (xii) follow from g = g+ − g−. Likewise, p|g| = g+ and
(1 − p)|g| = g− follow from |g| = g+ + g−. Since 0 ≤ |g|,p,1 − p, axiom (ii) implies that
0 ≤ p|g| = g+ and 0 ≤ (1 − p)|g| = g−, proving (xiii) and (xiv). �

Corollary 5.8 If g ∈ G, then g+ and g− are characterized by the properties g = g+ − g−,
g+g− = 0, and 0 ≤ g+ + g−.

Proof Suppose a, b ∈ G, g = a − b, ab = 0, and 0 ≤ a + b. Then ab = ba = 0, whence
g2 = a2 + b2 = (a + b)2, and as 0 ≤ a + b, it follows that a + b = (g2)1/2 = |g|. Therefore,
g+ = 1

2 (|g| + g) = 1
2 (a + b + a − b) = a and g− = 1

2 (|g| − g) = 1
2 (a + b − a + b) = b. �

6 Compressions, the Projection Cover Property, and the Comparability Property

A mapping J : G → G is called a retraction with focus p iff, for all g,h ∈ G and all e ∈ E,
(i) J (1) = p ∈ E, (ii) J (g + h) = J (g) + J (h), (iii) g ≤ h ⇒ J (g) ≤ J (h), and (iv) e ≤
p ⇒ J (e) = e [7, Definition 2.1]. A retraction J with focus p is called a compression iff,
for all e ∈ E, J (e) = 0 ⇒ e ≤ 1 − p [7, Definition 2.4].

Clearly, each projection p ∈ P determines a retraction Jp on G with focus p according
to Jp(g) := pgp for all g ∈ G. Conversely, by [7, Theorem 4.5], each retraction J on G

is a compression and has the form J = Jp where p = J (1) ∈ P . Thus, there is a bijective
correspondence p ↔ Jp between projections p ∈ P and compressions Jp on G. As a con-
sequence of [9, Theorem 1], the family (Jp)p∈P constitutes a so-called compression base for
G [9, Definition 2].

If p ∈ P and g ∈ G, it is easily seen that gp = pg iff g = Jp(g) + J1−p(g), hence the
notation g ∈ C(p) in [9, Definition 3] and [15, Definition 1.5] agrees with the notation in
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Definition 3.1. As per [15, Definition 1.5(iii)], CPC(g) denotes the set of all elements h ∈ G

such that, for all p ∈ P , g ∈ C(p) ⇒ h ∈ C(p), i.e., all elements h ∈ G that commute with
every projection p that commutes with g. Clearly, CC(g) ⊆ CPC(g).

If g ∈ G, then, translating [15, Definition 1.6(i)] into our present context, we have

P ±(g) := {p ∈ P ∩ CPC(g) : gp = pg and (1 − p)g ≤ 0 ≤ pg}.

Remark 6.1 By parts (ix) and (xi)–(xiv) of Theorem 5.7, (g+)o ∈ P ±(g), so G has the com-
parability property [15, Definition 1.6(ii)].5 By [14, Lemma 3.4(iv)], if e ∈ E, then eo is
the smallest projection p ∈ P such that e ≤ p; consequently, G has the so-called projection
cover property [15, Definition 1.4]. Since the order-unit space G has both the projection
cover and comparability properties, it is a so-called spectral order-unit space [15, Defini-
tion 1.7], and if we rewrite Jp(g) as pgp (or as pg if g ∈ C(p)), all of the results in [15]
pertaining to spectral order-unit spaces are applicable to G.

Remark 6.2 By [15, Theorem 2.1], there is a uniquely determined mapping ′ : G → P ,
called the Rickart mapping, such that, for all g ∈ G and all p ∈ P , p ≤ g′ ⇔ pg = gp = 0.
Obviously, g′ = 1 − go and go = g′′ := (g′)′, so in our present context, the Rickart mapping
has the even stronger property that, for all h ∈ G, gh = 0 ⇔ hg = 0 ⇔ h = g′h ⇔ h = hg′.
Thus, if we rewrite g′ as 1 − go and g′′ as go, all of the results in [15] pertaining to the
Rickart mapping are applicable to G.

According to [15, Definition 2.1], the positive part of g ∈ G is gp for any choice of
p ∈ P ±(g); hence by Theorem 5.7(xi), our notation g+, g−, |g| as per Definition 5.6 agrees
with the corresponding notation in [15].

Theorem 6.3 Let g ∈ G and let s := (g+)o − (g−)o. Then (i) s ∈ CC(g). (ii) go = s2.
(iii) |g| = sg = gs. (iv) g = s|g| = |g|s. (v) |g|o = go.

Proof By Theorem 5.7(ix), (g+)o ∈ CC(g). Likewise, by Theorem 5.7 (g−)o = ((−g)+)o ∈
CC(−g) = CC(g), and (i) follows. See [14, Lemma 4.4 and Theorem 4.7(iii)] for proofs
of (ii), (iii), and (iv). To prove (v), we note that gh = 0 ⇒ sgh = 0 ⇒ |g|h = 0 ⇒ s|g|h =
0 ⇒ gh = 0, so gh = 0 ⇔ |g|h = 0. �

The element s in Theorem 6.3 is called the signum of g, and the equation g = s|g| = g|s|
is called the polar decomposition of g.

By [1, Proposition II.1.2], the order-unit space G is a normed real vector space with the
order-unit norm

‖g‖ = inf{λ ∈ R : 0 < λ and − λ ≤ g ≤ λ} for every g ∈ G.

Theorem 6.4 Let g,h ∈ G and p ∈ P . Then: (i) −‖g‖ ≤ g ≤ ‖g‖. (ii) −h ≤ g ≤ h ⇒
‖g‖ ≤ ‖h‖. (iii) ‖g2‖ = ‖g‖2. (iv) 0 	= p ⇒ ‖p‖ = 1. (v) ‖pgp‖‖ ≤ ‖g‖. (vi) h = |g| ⇒
‖h‖ = ‖g‖. (vii) 0 ≤ g,h ⇒ ‖g − h‖ ≤ max{‖g‖,‖h‖}. (viii) ‖ 1

2 (gh + hg)‖ ≤ ‖g‖‖h‖.
(ix) gCh ⇒ ‖gh‖ ≤ ‖g‖‖h‖.

5In [8, Definition 3.4] the comparability property was called general comparability because, for interpolation
groups, it is equivalent to the property of the same name [16, Chap. 8].
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Proof Part (i) follows from [1, Proposition II.1.2], and part (ii) follows from [16, Propo-
sition 7.12(c)]. If 0 < λ ∈ R, then Lemma 3.2(vi) with g replaced by λ−1g implies that
−λ ≤ g ≤ λ ⇔ g2 ≤ λ2, from which (iii) follows. As p2 = p, (iv) follows from (iii). Part (i)
implies that −‖g‖p = −p‖g‖p ≤ pgp ≤ p‖g‖p = ‖g‖p, and since p ≤ 1, ‖g‖p ≤ ‖g‖,
whence −‖g‖ ≤ pgp ≤ ‖g‖ and therefore (v) holds. If h = |g|, then h2 = g2, so ‖h‖2 =
‖g‖2 by (iii), proving (vi).

To prove (vii), we assume without loss of generality that 0 < ‖h‖ ≤ ‖g‖. As 0 ≤ g,
(i) implies that h ≤ ‖h‖ ≤ ‖g‖ ≤ ‖g‖ + g. Likewise, g ≤ ‖g‖ ≤ ‖g‖ + h, and it follows that
−‖g‖ ≤ g − h ≤ ‖g‖, whence ‖g − h‖ ≤ ‖g‖ = max{‖g‖,‖h‖}.

To prove (viii), we begin by assuming without loss of generality that g,h 	= 0. Let a :=
g/‖g‖ and b := h/‖h‖, so that ‖a‖ = ‖b‖ = 1 and ‖ 1

2 (gh + hg)‖ = ‖g‖‖h‖‖ 1
2 (ab + ba)‖.

Thus, it will be sufficient to prove that ‖ 1
2 (ab + ba)‖ ≤ 1. As ‖a‖ = ‖b‖ = 1, we have

‖a ± b‖ ≤ 2, so by (iii),

‖(a ± b)2‖ = ‖a ± b‖2 ≤ 4.

Therefore, by (vii),

∥
∥
∥
∥

1

2
(ab = ba)

∥
∥
∥
∥ = 1

4
‖(a + b)2 − (a − b)2‖ ≤ 1

4
max{‖(a + b)2‖,‖(a − b)2‖} ≤ 1.

Obviously, (ix) follows from (viii). �

Recall that G is said to be monotone σ -complete iff every ascending sequence in G that
is bounded above in G has a supremum in G [13], [16, Chap. 16]. See [17, Proposition 3.9]
for a proof of the following.

Theorem 6.5 If G is monotone σ -complete, then it is a real Banach space under the order-
unit norm.

Lemma 6.6 Suppose that a ∈ G, g1 ≤ g2 ≤ · · · is an ascending sequence in G, and gn → a

in norm. Then: (i) a is an upper bound in G for (gn)n∈N. (ii) If (gn)n∈N has a supremum b in
G, then a = b. (iii) If the elements of (gn)n∈N commute pairwise, then a is the supremum of
(gn)n∈N and a ∈ CC({gn : n ∈ N}.

Proof For each m ∈ N, choose nm ∈ N such that, for all n ∈ N, nm ≤ n ⇒ ‖gn − a‖ ≤ 1/m.
Then, by Theorem 6.4(i), nm ≤ n ∈ N ⇒ gn − a ≤ 1/m ⇒ gn ≤ a + 1/m. As g1 ≤ g2 ≤
· · · ≤ gmn , it follows that gn ≤ a + 1/m, whence m(gn − a) ≤ 1 for all m,n ∈ N. Since
G is archimedean, we deduce that gn − a ≤ 0, i.e., gn ≤ a for all n ∈ N, proving (i). Now
assume that (gn)n∈N has a supremum b in G. By (i), we have gn ≤ b ≤ a for all n ∈ N,
whence 0 ≤ b − gn ≤ a − gn, and it follows from Theorem 6.4(ii) that ‖b − gn‖ ≤ ‖a − gn‖.
Therefore, gn → b in norm, and consequently, a = b, proving (ii). Part (iii) follows from (i),
(ii), and axiom (vii). �

7 Spectral Resolution and the Spectrum

As G is a spectral order-unit space (Remark 6.1), all of the results in [15, Sects. 3 and 4]
pertaining to the spectral resolution and the spectrum are available for G. We begin by
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adapting the notation in [15], as per Remarks 6.1 and 6.2, to our present context by rewriting
Jp(g) as pgp (or as pg if pCg), g′ as 1 − go, and g′′ as go for g ∈ G and p ∈ P .

If g ∈ G and λ ∈ R, we define the projections

pλ := 1 − ((g − λ)+)o and dλ := 1 − (g − λ)o.

The family (pλ)λ∈R is called the spectral resolution of g, and the projection dλ is called the
λ-eigenprojection for g [15, Definition 3.2]. If λ ∈ R, then λ is an eigenvalue of g iff dλ 	= 0.
We also define the lower and upper spectral bounds for g by

L := sup{λ ∈ R : λ ≤ g} and U := inf{λ ∈ R : g ≤ λ},
respectively [15, Definition 3.1]. By [15, Theorem 3.1], −∞ < L ≤ U < ∞ and ‖g‖ =
max{|L|, |U |}.

Standing Assumption 7.1 In what follows, we assume that (pλ)λ∈R is the spectral resolu-
tion of g, (dλ)λ∈R is the family of eigenprojections for g, and the lower and upper spectral
bounds for g are L and U , respectively.

Theorem 7.2 Let λ,μ ∈ R. Then:

(i) pλ, dλ ∈ P ∩ CC(g)6 and dλCpλ.
(ii) pλg − λpλ ≤ 0 ≤ (1 − pλ)g − λ(1 − pλ).

(iii) λ ≤ μ ⇒ pλ ≤ pμ and pμ − pλ = pμ ∧ (1 − pλ).
(iv) λ < μ ⇒ dλ ≤ pλ ≤ 1 − dμ ⇒ dλdμ = 0.
(v) μ ≥ U ⇒ pμ = 1, and λ < U ⇒ pλ < 1.

(vi) λ < L ⇒ pλ = 0, and L < μ ⇒ 0 < pμ.
(vii) L = sup{λ ∈ R : pλ = 0}, and U = inf{μ ∈ R : pμ = 1}.
(viii) If λ ≤ μ and q ∈ P with q ≤ pμ − pλ, then λq ≤ qgq ≤ μq .

(ix) pλ = ∧{pμ : λ < μ ∈ R}.
(x) pμ − dμ = ∨{pλ : μ > λ ∈ R}.

Proof Part (i) follows from Theorems 5.2 and 5.7(ii). Parts (ii)–(iv) and (vi)–(viii) follow
from the corresponding parts of [15, Theorem 3.3], and part (v) follows from [15, Theo-
rem 3.3(v)] together with the fact that, by part (ix), pU = 1. Parts (ix) and (x) are conse-
quences of [15, Theorems 3.5, 3.6]. �

Applying the fact that pU = 1 to [15, Theorem 3.4], obtain the following fundamental
result:

Theorem 7.3 The element g ∈ G can be written as a norm-convergent Riemann-Stieltjes
type integral

g =
∫ U

L−0
λdpλ.

Theorem 7.4 There exists an ascending sequence g1 ≤ g2 ≤ · · · in CC(g) such that each
gn is a finite linear combination of projections in the family (pλ)λ∈R and gn → g in norm.
Moreover, g is the supremum of (gn)n∈N in G and g ∈ CC({g1, g2, . . .}).

6In [15], only the weaker conditions pλ,dλ ∈ P ∩ CPC(g) were available.
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Proof The first part of the theorem follows from [15, Corollary 3.1] together with the ob-
servation that each pλ belongs not only to CPC(g), but to CC(g). The second part then
follows from Lemma 6.6. �

Lemma 7.5 If h ∈ G, then hCg ⇔ hCpλ for all λ ∈ R.

Proof If hCg and λ ∈ R, then since pλ ∈ CC(g), it follows that hCpλ. Conversely, if
hCpλ for all λ ∈ R, then for the ascending sequence (gn)n∈N in Theorem 7.4, we have
h ∈ C({g1, g2, . . .}), whence hCg. �

Theorem 7.6 Let g,h ∈ G and let A ⊆ G. Then: (i) gCh iff every projection in the spectral
resolution of g commutes with every projection in the spectral resolution of h. (ii) C(C(A)∩
P ) = CC(A). (iii) CPC(g) = CC(g).

Proof (i) Follows from Lemma 7.5. As C(A)∩P ⊆ C(A), we have CC(A) ⊆ C(C(A)∩P ).
Conversely, suppose g ∈ C(C(A)∩P ), h ∈ C(A), and (qλ)λ∈R is the spectral resolution of h.
Then by Lemma 7.5, qλ ∈ C(A) ∩ P , so gCqλ for every λ ∈ R, and therefore gCh. Conse-
quently, C(C(A) ∩ P ) ⊆ CC(A), and (ii) holds. Putting A := {g} in (ii), we obtain (iii). �

Definition 7.7 Let A ∈ G,ρ ∈ R. We say that ρ belongs to the resolvent set of a iff there
exists 0 < ε ∈ R such that pλ is constant for λ in the open interval (ρ − ε,ρ + ε). The
spectrum of a, in symbols, spec(a), is defined to be the complement in R of the resolvent
set of a.

The following result is a consequence of [15, Theorem 4.2].

Theorem 7.8 Every isolated point of spec(a) is an eigenvalue of a and every eigenvalue of
a belongs to spec(a).

Theorem 7.9 (i) If γ,μ ∈ R, then spec(γg +μ) = {γα +μ : α ∈ spec(g)}. (ii) spec(g) is a
closed nonempty subset of the closed interval [L,U ] ⊆ R. (iii) L = inf(spec(g)) ∈ spec(g),
U = sup(spec(g)) ∈ spec(g), and ‖g‖ = sup{|α| : α ∈ spec(g)}. (iv) 0 ≤ g ⇔ spec(g) ⊆
[0,∞).

Proof By [15, Theorem 4.1], we have spec(a +μ) = {α +μ : α ∈ spec(a)} and spec(−a) =
{−α : α ∈ spec(a)}; hence (i) follows from the obvious facts that, for 0 ≤ γ , (γ a)+ = γ a+
and for 0 	= γ , (γ a)o = ao. Parts (ii), (iii), and (iv) follow from [15, Theorems 4.3 and
4.4]. �

Remark 7.10 Although we shall not do so here, it can be shown that spec(g) is the set of all
λ ∈ R such that g − λ fails to have a multiplicative inverse in G (cf. [15, Theorem 4.7]).
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